Aryloxy-derivatives of Thionyl Tetrafluoride

By D. S. Ross and D. W. A. Sharp,* Department of Chemistry, University of Glasgow, Glasgow W.2

Thionyl tetrafluoride reacts with arylsilyl ethers to give substituted derivatives ArO·S(:O)F₃ (Ar = Ph; o-, m-, p-MeC₆H₄; m-, p-ClC₆H₄; o-, m-, p-FC₆H₄). (ArO)₂S(:O)F₂ (Ar = Ph, p-MeC₆H₄, p-ClC₆H₄, p-NO₂·C₆H₄), (ArO)₃S(:O)F (Ar = Ph, p-MeC₆H₄, p-ClC₆H₄, p-ClC₆H₄, p-ClC₆H₄). (ArO)₃S(:O)F (Ar = Ph, p-MeC₆H₄, p-ClC₆H₄, p-ClC₆H₄). (ArO)₃S(:O)F (Ar = Ph, p-MeC₆H₄, p-ClC₆H₄, p-ClC₆H₄). data and modes of thermal and hydrolytic decomposition were studied for most derivatives. The thionyl trifluorides and difluorides appear to have structures based on a trigonal bipyramidal co-ordination about sulphur.

MONOSUBSTITUTED derivatives of thionyl tetrafluoride, e.g. $R_2NS(:O)F_3$, have been prepared by the reaction between silvlamines and the fluoride.¹ Substitution by silvl ethers is now reported; † the substitution often proceeding to displace more than one fluorine. Relatively stable aryloxy-derivatives of thionyl tetrafluoride are formed in this way although alkoxy-derivatives are pletion of the present work. Where there is overlap there is good agreement between the present results and those for phenoxythionyl trifluoride. Previous attempts to effect substitution of thionyl tetrafluoride by use of phenols have been unsuccessful.⁴

The aryloxy-derivatives of thionyl tetrafluoride isolated in the present work are listed in Table 1. There is

TABLE 1

Products of the reactions between silyl ethers and thionyl tetrafluoride

PhO·S(:O)F ₃ p-MeC ₆ H ₄ ·O·S(:O)F ₃ m-MeC ₆ H ₄ ·O·S(:O)F ₃ o-MeC ₆ H ₄ ·O·S(:O)F ₃ p-ClC ₆ H ₄ ·O·S(:O)F ₃ m-ClC ₆ H ₄ ·O·S(:O)F ₃	δ (p.p.m. from Me ₄ Si) -7.24 -7.19 (Ar-H), -2.32 (CH ₃) -7.08 (Ar-H), -2.22 (CH ₃) -7.17 (Ar-H), -2.18 (CH ₃) -7.20 -7.28	$\begin{array}{c} \delta_{F\text{-eq}} \\ (p.p.m. \ from \ CCl_3F) \\ -67.6 \\ -67.2 \\ -67.0 \\ -67.4 \\ -68.1 \\ -68.4 \end{array}$	$ \begin{array}{c} \delta_{F \cdot az} \\ (p.p.m. \ from \ CCl_3F) \\ - 89 \cdot 1 \\ - 88 \cdot 4 \\ - 88 \cdot 2 \\ - 86 \cdot 4 \\ - 89 \cdot 7 \\ - 89 \cdot 5 \end{array} $	$\begin{array}{c} J_{F \cdot eq, F - az} \\ Hz \\ 213 \cdot 2 \\ 217 \cdot 5 \\ 213 \cdot 4 \\ 209 \cdot 4 \\ 222 \cdot 2 \\ 219 \cdot 8 \end{array}$	$\begin{matrix} \nu_{\rm S=0} \\ (\rm cm^{-1} \ from \ i.r.) \\ 1323 \\ 1324 \\ 1323 \\ \rm Not \ observed \\ 1327 \\ 1327 \end{matrix}$					
p-FC ₆ H ₄ ·O·S(:O)F ₃	$-7.08 \left[\delta_{Ar-F} + 112.3 \text{ p.p.m.} \right]$	-67.4	-88.2	$215 \cdot 4$	1331					
m -FC, H_4 ·O·S(:O)F ₃	$-7.12 \left[\delta_{Ar-F} + 108.2 \text{ p.p.m.} \right]$	-67.6		218.0	1334					
o-FC,H4.O.S(O)F3	$-7.24 \left[\delta_{\rm Ar-F} + 129.4 \text{ p.p.m.}\right]$	- 69.8	86.1	218.0	Not observed					
$(PhO)_{s}S(:O)F_{s}$	-7.13		89.0		1288					
$(p-Me\tilde{C}_{6}H_{4}\cdot O)_{2}S(O)F_{2}$	-7.14 (Ar-H), -2.32 (CH ₃)		86.0		1284					
$(\dot{\rho} - \text{ClC}_{\mathbf{g}} \dot{\mathbf{H}}_{4} \cdot \mathbf{O})_{2} \dot{\mathbf{S}} (\dot{\mathbf{O}}) \dot{\mathbf{F}}_{2}$	-7.34		87.1		1294, 1287					
$(p-NO_2 \cdot C_6 H_4 \cdot O)_2 S(O) F_2$	Insoluble				1283					
(PhO) \$S(:0)F	Not measured		68.4		Not identified					
(̀p-MéČ ₆ H₄•́O) ₃ S(:O)F	Not measured		-67.0		,,					
(p-ClC ₆ H ₄ ·O) ₃ S(:O)F	Not measured		69.9		,,					
(C ₆ F ₅ O) ₃ S(CO)F	$\delta_{\rm CF}$ at +154.0, +157.2,		68.1		,,					
	+164.2 p.p.m.									
$(m-MeC_{6}H_{4}O)_{4}SO$	-7.12 (Ar-H), -2.31 (CH ₃)				,,					
(o-C ₆ H ₄ Ŏ ₂) [*] ₂ SÖ	6.92				,,					
· · · · · ·										
TABLE 2										

Mass spectra of $ArO \cdot S(:O)F_3$ derivatives (relative intensities)								
	ArOSOF ₃ +	ArOSOF+	SOF ₃ +	ArO+	SOF_{2}^{+}	Ar ⁺	SOF ⁺	SO+
$PhO \cdot S(:O)F_{3}$	5	11	100	63	25^{-}	54	36	7
p-Tol·O·S(:O)F,	10	6	44	100	16	3	29	11
m-Tol·O·S(:Ó)F,	18	21	100	100	12	30	27	9
o-Tol·O·S(O)F	19	11	49	100	50	25	3	59
p-ClC ₆ H₄•Ò•Ś(: Ŏ)F ₃ *	1	7	100	66	32	15	11	41
m-ClC ₆ H ₄ ·O·S(:O)F ₃ *	15	7	100	18	4	10	13	59
p-FC ₆ H ₄ ·O·S(:O)F ₃	8	7	100	78	25	31	60	22
m-FC ₆ H ₄ ·O·S(:O)F ₃	7	5	100	19	8	16	17	6
o-F ₆ C ₆ H ₄ ·O·S(:O)F ₃	11	6	100	46	19	21	35	9
		•	D 1 f 35	C1				

* Peaks for ³⁵Cl only.

unstable. This increased stability of aryloxy-derivatives as compared with alkoxy- is parallel with that observed for derivatives of phosphorus pentafluoride and sulphur tetrafluoride.² The formation and some reactions of phenoxythionyl trifluoride were reported ³ after com-

† A preliminary account of this work was given at the Sixth International Fluorine Symposium, Durham, 1971, Abstract C46.

¹ S. P. von Halasz and O. Glemser, Chem. Ber., 1971, 104, 1256, and references therein.

² S. C. Peake and R. Schmutzler, *Chem. Comm.*, 1968, 665; J. I. Darragh and D. W. A. Sharp, *Angew. Chem.*, 1970, **82**, 45.

no consistent pattern as to which substituted derivatives may be isolated and many of the derivatives are too unstable to permit analysis and were identified by spectroscopy only. However, n.m.r., i.r. (Table 1), and mass spectroscopic (Table 2) data are all consistent with the formulation shown. The two orthosulphates formed in these reactions are the first examples of these deriva-

³ S. P. von Halasz, O. Glemser, and M. F. Feser, Chem. Ber., 1971, 104, 1242.

4 R. Cramer and D. D. Coffmann, J. Org. Chem., 1961, 26, 4164.

tives. No structural information is available for these compounds which could be polymeric.

Thionyl tetrafluoride has a structure based on a trigonal bipyramid with the oxygen occupying an equatorial position.⁵ By analogy with substitution patterns in phosphorus pentafluoride and the published work on thionyl tetrafluoride, substitution would be expected to leave apical fluorines. In accordance with this the aryloxythionyl trifluorides show AB₂ ¹⁹F n.m.r. spectra whilst the bis(aryloxy)thionyl difluorides show only one ¹⁹F signal which occurs in almost the same position as the signal for the axial fluorines of the trifluorides. The compounds formulated as tris(aryloxy)thionyl fluorides show only one 19F signal but the chemical shift of these signals would appear to indicate that they are equatorial fluorines. This would be a most unexpected conclusion since only a few examples where the steric effects of bridging groups leave an equatorial fluorine in preference to an axial fluorine in substituted derivatives of trigonal bipyramidal fluorides are known.⁶ It is possible that the entire geometry of the molecule has been altered (e.g. to a polymer or to a square pyramidal configuration) in these tris(aryloxy)thionyl fluoride derivatives so that conventional distinctions between equatorial and axial fluorines are no longer meaningful. The ¹⁹F chemical shift of these derivatives is consistent with an S-F bond and is inconsistent with an ionic fluoride.

The i.r. spectra of these derivatives have many bands but the S-O stretching frequency can be identified for most of the trifluoride derivatives (Table 1). Replacement of the fluorine of thionyl tetrafluoride by less electronegative substituents lowers the S-O stretching frequency, a situation analogous to that found in derivatives of phosphoryl trifluoride⁷ and thionyl fluoride.⁸ The minor shifts observed with change in substituent of the aryl group also reflect changes in electronic releasing power of the substituents. The S-O stretching bands in the tris(aryloxy)- and tetrakis(aryloxy)-derivatives could not be identified because of the presence of other bands in the region expected for their occurrence. Although it was possible to assign S-F modes in NN-dialkylaminothionyl trifluorides definite identification of S-F modes in the aryloxyderivatives is not possible on account of the presence of large numbers of bands from the aryloxy-groups.

The mass spectra of the aryloxythionyl trifluorides were readily obtained and are recorded in Table 2, the other aryloxy-derivatives do not give satisfactory spectra as they are too involatile for passing into the mass

⁵ P. L. Goggin, H. L. Roberts, and L. A. Woodward, Trans. Faraday Soc., 1961, 57, 1877.

⁶ G. O. Doak and R. Schmutzler, Chem. Comm., 1970, 476.

 ⁷ R. Schmutzler, Adv. Fluorine Chem., 1965, 4, 31.
⁸ R. Keat, D. S. Ross, and D. W. A. Sharp, Spectrochim. Acta, 1971, 27A, 2219. ⁹ O. Glemser, S. P. von Halasz, and V. Biermann, Z. Natur-

forsch., 1968, 23B, 1381; S. P. von Halasz and O. Glemser, Chem. Ber., 1970, 103, 594. ¹⁰ F. B. Dudley, G. H. Cady, and D. F. Eggers, J. Amer.

Chem. Soc., 1956, 78, 1553.

spectrometer in the vapour phase and decompose on direct insertion. The spectra of the aryloxytrifluorides are characteristic; the strongest peaks show the corresponding ³²S and ³⁴S peaks. The parent ion occurs in all of the aryloxythionyl trifluoride mass spectra although it is a relatively weak species in the mass spectra of NNdialkylaminothionyl trifluorides 1,9 and thionyl tetrafluoride.¹⁰ The parent ion is particularly intense in the methylsubstituted derivatives.

On heating, and in many cases merely on standing, the aryloxythionyl trifluorides eliminate aryl fluorides and leave sulphuryl fluoride. Decomposition of the more highly substituted thionyl tetrafluoride derivatives yields diaryl sulphates although the other products of this decomposition have not been identified. Hydrolysis generally gives aryloxylsulphuryl fluorides, ArO·SO₂F.

EXPERIMENTAL

Materials were handled by standard vacuum-line procedures. I.r. spectra were recorded on a Perkin-Elmer 457 spectrometer. Solutions (<0.05M) for i.r. measurements were made up in dry carbon tetrachloride using a dry box. N.m.r. spectra were recorded at 310 K on a Perkin-Elmer R10 spectrometer. Mass spectra were recorded on an A.E.I. M.S.12 spectrometer using an accelerating voltage of 70 eV and a source temperature of 350-390 K. Analyses are by Bernhardt.

Thionyl tetrafluoride was prepared from sulphur tetrafluoride, nitrogen(IV) oxide, and oxygen; ¹¹ sulphur tetrafluoride was purchased from Peninsular ChemResearch. Silyl ethers were prepared by refluxing the appropriate phenol with trimethylchlorosilane overnight; 12 the silvl ethers were distilled at atmospheric pressure. The preparation of o-phenylene-1,2-dioxybis(trimethylsilane) required a refluxing period of 5 days.

Trimethylphenoxysilane-Thionyl Tetrafluoride.-1:1 Reaction. The reaction was carried out in a glass tube fitted with a Teflon stopcock. Me₃Si·OPh (10·2 mmol) was placed in the tube and $S(:O)F_4$ (11.4 mmol) was condensed in at 77 K. The reactants were set aside at room temperature for 3 h during which time effervescence occurred and the solution turned red. The volatile products were Me₂SiF (10 mmol) (identified by n.m.r.¹³ and i.r.¹⁴) and traces of $S(O)F_4$ (i.r.) ¹⁵ and SO_2F_2 (i.r.).¹⁵ Phenoxythionyl trifluoride, PhO·S(:O)F₃ (8·4 mmol), is only slightly volatile and was recovered by distillation. Bisphenoxythionyl difluoride (PhO)₂S(:O)F₂, (1 mmol; n.m.r.) remained with some red liquid as a non-volatile fraction. PhO·S(:O)F₃ decomposed to SO_2F_2 ¹⁶ and C_6H_5F ¹⁷ (n.m.r.) when set aside at room temperature for 5 days or at 350 K for 30 min. It is hydrolysed to SO_2F_2 , C_6H_5F , and $PhOSO_2F$ ($\delta_F - 36.6$ p.p.m.).

¹¹ W. C. Smith and V. A. Engelhardt, J. Amer. Chem. Soc., 1960, 82, 3828.

¹² G. R. Wilson, A. G. Smith, and F. C. Ferris, J. Org. Chem., 1968, **12**, 281.

¹³ H. Vahrenkamp and H. Nöth, J. Organometallic Chem., 1968, 12, 281; H. Schmidbauer, J. Amer. Chem. Soc., 1963, 85, 2336.

¹⁴ H. Kriegsmann, Z. anorg. Chem., 1958, 294, 113.

¹⁵ T. Birchall and R. J. Gillespie, Spectrochim. Acta, 1966, 22, 681.

¹⁶ G. Franz and H. Neumayr, Inorg. Chem., 1964, 3, 921.

¹⁷ N. Muller and D. T. Carr, J. Phys. Chem., 1963, 67, 112.

2:1 Reaction. The reaction was carried out in a twoarmed reactor fitted with Teflon stopcocks, the arms being joined by a tube containing a glass sinter. Me₃Si·OPh (14 mmol) and S(:O)F₄ (7·1 mmol) were placed in the reactor and the reaction was set aside at room temperature for 48 h; the products were Me₃SiF (i.r.;¹⁴ 13·8 mmol) and a trace of SO₂F₂ (i.r.).¹⁵ Removal of volatile materials left (PhO)₂S(:O)F₂ contaminated with a red liquid; it was recrystallised from CCl₂F·CClF₂ at 273 K to give a white solid, m.p. 353 K (decomp.). It appears stable indefinitely at room temperature, and is hydrolysed to (PhO)₂SO₂ (mass spec.).

3:1 Reaction. Me₃Si·OPh (12.0 mmol) and S(:O)F₄ (4.1 mmol) were allowed to react at room temperature for 30 min. The products were Me₃SiF (i.r.; 11.8 mmol) (PhO)₂S(:O)F₂ (n.m.r.) and trisphenoxythionyl fluoride, (PhO)₃S(:O)F. The latter compound is very unstable and cannot be isolated from the mixture.

4:1 Reaction. Me₃Si·OPh (12.0 mmol) and S(:O)F₄ (3.0 mmol) were allowed to react at room temperature for 20 min. The products were Me₃SiF (i.r.;¹⁵ 11.9 mmol) and a dark red liquid. Fractional distillation of the liquid gave only diphenyl sulphate (mass spectrum m/e found 250. Calc. for parent ion of diphenyl sulphate m/e 250) as an identifiable product.

Detailed experimental procedures (where these differ from the description above) and results are given below.

PhO·SiMe₃. Conditions as above. Product from 1:1 reaction PhO·S(:O)F₃, too unstable for analysis. Major product from 2:1 reaction (PhO)₂S(:O)F₂ (Found: C, 53·1; H, 3·7; F, 14·1; S, 11·9. $C_{12}H_{10}F_2O_3S$ requires C, 52·9; H, 3·7; F, 14·0; S, 11·8%). Major product from 3:1 reaction (PhO)₃S(:O)F, too unstable for analysis.

p-MeC₆H₄·O·SiMe₃. 1:1 *Reaction.* p-MeC₆H₄·O·SiMe₃ (10·5 mmol) and S(:O)F₄ (11·2 mmol) were set aside at room temperature for 3 h. Products were Me₃SiF (10·4 mmol), p-MeC₆H₄·O·S(:O)F₃ (9·9 mmol) (Found for p-tolyloxythionyl trifluoride: C, 39·8; H, 3·5; F, 26·8; S, 14·9. C₇H₇F₃O₂S requires C, 39·6; H, 3·3; F, 26·9; S, 15·1%) and (p-MeC₆H₄O)₂S(O)F₂ (n.m.r.). On prolonged heating at 370 K p-MeC₆H₄·O·S(:O)F₃ decomposed to p-MeC₆H₄F ($\delta_{\rm F} = 120\cdot2$) and SO₂F₂ (n.m.r.). On exposure to moist air p-MeC₆H₄·O·S(:O)F₃ gives SO₂F₂, SiF₄, p-MeC₆H₄·O·SO₂F [Found: M, 190 (mass spec.). Calc.: M, 190] and solids.

2:1 Reaction. p-MeC₆H₄·O·SiMe₃ (12·2 mmol) and S(:O)F₄ (6·1 mmol) were set aside at room temperature for 48 h. Products were Me₃SiF (11·9 mmol) and (p-MeC₆H₄O)₂S(:O)F₂ (4·9 mmol) [Found for *bis*(p-tolyloxy)thionyl difluoride: C, 56·3; H, 4·9; F, 12·9; S, 10·9. C₁₄H₁₄F₂SO₃ requires C, 56·0; H, 4·7; F, 12·7; S, 10·7%]. Thermal and hydrolytic decomposition of (p-MeC₆H₄O)₂-S(O)F₂ gave (p-MeC₆H₄O)₂SO₂ (Found: M, 278. Calc.: M, 278).

3[']: 1 Reaction. p-MeC₆H₄OSiMe₃ (12·6 mmol) and S(:O)F₄ (4·3 mmol) were set aside at room temperature for 30 min. Products were Me₃SiF (12·5 mmol) and (p-MeC₆H₄O)₂-S(:O)F₂ and (p-MeC₆H₄O)₃S(:O)F (n.m.r.) in approximately equal amounts. The latter compound was too unstable for analysis.

4:1 Reaction. p-MeC₆H₄·O·SiMe₃ (13·2 mmol) and S(:O)F₄ (3·4 mmol) were set aside at room temperature for 30 min. Products were Me₃SiF (13·2 mmol), a red viscous oil, and (p-MeC₆H₄O)₂SO₂ (identified by mass spectroscopy, m/e found 278. Calc. for parent ion of bis-p-tolylsulphate m/e 278).

 $m-MeC_6H_4O$ ·SiMe₃. 1:1 Reaction. $m-MeC_6H_4$ ·O·SiMe₃

(12.5 mmol) and S(:O)F₄ (13.0 mmol) were set aside at room temperature for 3 h. Products were Me₃SiF (12.5 mmol), SO₂F₂ (trace), *m*-MeC₆H₄·O·S(:O)F₃ (8.9 mmol), and (*m*-MeC₆H₄·O)₄SO (1.4 mmol) (Found for *tetrakis*-m-tolylortho-sulphate: C, 69.4; H, 5.7; S, 7.3. C₂₈H₂₈O₅S requires C, 70.6; H, 5.7; S, 6.8%). On standing at room temperature for several days or on heating at 350 K for 15 min *m*-MeC₆H₄·O·S(:O)F₃ decomposed to SO₂F₂, *m*-CH₃C₆H₄F (n.m.r.), and *m*-MeC₆H₄·O·SO₂F ($\delta_{\rm F}$ - 36.9 p.p.m.) (Found: *M*, 190. Calc.: *M*, 190).

o-MeC₆H₄·O·SiMe₃. 1:1 Reaction. o-MeC₆H₄·O·SiMe₃ (13·9 mmol) and S(:O)F₄ (14·0 mmol) were set aside at room temperature for 3 h. Products were Me₃SiF (13·8 mmol), o-MeC₆H₄·O·S(:O)F₃ (8·1 mmol), and a yellow viscous liquid. o-MeC₆H₄·O·S(:O)F₃ decomposes on standing to a tar and SO₂F₂. On heating to 340 K o-MeC₆H₄F, SO₂F₂, and solids are formed; hydrolysis gives o-MeC₆H₄OSO₂F ($\delta_{\rm F}$ - 38·5 p.p.m.).

p-ClC₆H₄·O·SiMe₃. 1:1 Reaction. p-ClC₆H₄·O·SiMe₃ (10·5 mmol) and S(:O)F₄ (11·0 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (10·4 mmol) and p-ClC₆H₄O·S(:O)F₃ (8·9 mmol) (Found for p-chlorophenoxythionyl trifluoride: C, 31·1; H, 1·9; Cl, 15·4; F, 25·3; S, 13·5. C₆H₄ClF₃O₂S requires C, 31·0; H, 1·7; Cl, 15·3; F, 24·5; S, 13·8%). p-ClC₆H₄·O·S(:O)F₃ decomposes on prolonged heating at 380 K to give SO₂F₂ and a black tar. p-ClC₆H₄F was not identified amongst the products, hydrolysis gave SO₂F₂, SiF₄, and p-ClC₆H₄·O·SO₂F ($\delta_{\rm F}$ - 36·8 p.p.m.) [Found: M (mass spec.), 210. Calc.: M, 210].

2:1 Reaction. p-ClC₆H₄·O·SiMe₃ (12·1 mmol) and S(:O)F₄ (6·1 mmol) were set aside at room temperature for 48 h. Identified products were Me₃SiF (12·1 mmol) and (p-ClC₆H₄·O)₂S(:O)F₂ (5·2 mmol) [Found for bis(p-chlorophenoxy)thionyl diffuoride: C, 42·4; H, 2·6; Cl, 21·0; F, 11·3; S, 9·2. C₁₂H₈Cl₂F₂O₃S requires C, 42·0; H, 2·4; Cl, 20·8; F, 11·1; S, 9·4%].

3:1 Reaction. p-ClC₆H₄·O·SiMe₃ (11·5 mmol) and S(:O)F₄ (5·8 mmol) were shaken together at room temperature for 12 h. Products were Me₃SiF (11·4 mmol), p-ClC₆H₄·O·S(:O)F₃, (p-ClC₆H₄·O)₂S(:O)F₃, and (p-ClC₆H₄·O)₃S(:O)F all identified by n.m.r. spectroscopy and present in approximately equal proportions. Hydrolysis of (p-ClC₆H₄·O)₂S(:O)F₂ gives (p-ClC₆H₄·O)₂SO₂ [Found: *M* (mass spec.), 318. Calc.: *M*, 318].

4:1 Reaction. p-ClC₆H₄·O·SiMe₃ (12 mmol) and S(:O)F₄ (1·2 mmol) were set aside at room temperature for 30 min. Products were Me₃SiF (12·2 mmol), (p-ClC₆H₄O)₂S(:O)F₂, and (p-ClC₆H₄O)₃S(:O)F (n.m.r.) in approximately equal proportions. A mixture of p-ClC₆H₄·O·SiMe₃ (10·5 mmol) and S(:O)F₄ (2·6 mmol) left at room temperature for 30 min gave Me₃SiF (10·5 mmol) and a dark red liquid in which bis-(p-chlorophenyl)orthosulphate was identified (Found m/e of highest ratio 318, 322. Calc. for C₁₂H₈³⁵Cl₂O₄S and C₁₂H₈³⁷Cl₂O₄S, m/e 318, 322).

m-Cl₆H₄·O·SiMe₃. 1:1 Reaction. m-ClC₆H₄·O·SiMe₃ (11·5 mmol) and S(:O)F₄ (12·9 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (11·4 mmol) and m-ClC₆H₄·O·S(:O)F₃ (9·5 mmol) (Found for m-chlorophenoxythionyl trifluoride: C, 31·1; H, 1·7; Cl, 15·2; F, 24·8; S, 13·9. C₆H₄ClF₃O₂S requires C, 31·0; H, 1·7; Cl, 15·3; F, 24·5; S, 13·8%). On heating to 400 K and on hydrolysis m-ClC₆H₄·O·S(:O)F₃ gives SO₂F₂, m-ClC₆H₄·O·SO₂F ($\delta_{\rm F}$ -38·8 p.p.m.) [Found: M (mass spec.), 210. Calc.: M, 210]. o-ClC₆H₄·O·SiMe₃. 1:1 *Reaction.* o-ClC₆H₄·O·SiMe₃ (9·4 mmol) and S(:O)F₄ (10·6 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (7·1 mmol), SO₂F₂, SiF₄, and o-ClC₆H₄·O·SO₃F ($\delta_F = -40.4$ p.p.m.) [Found: *M* (mass spec.), 210. Calc.: *M*, 210].

p-FC₆H₄O·SiMe₃. 1:1 *Reaction.* p-FC₆H₄·O·SiMe₃ (11·1 mmol) and S(:O)F₄ (11·9 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (11·0 mmol) and p-FC₆H₄OS(O)F₃ (9·8 mmol) (Found for p-fluorophenoxythionyl trifluoride: C, 33·7; H, 2·0; F, 34·8; S, 15·1. C₆H₄F₄O₂S requires C, 33·4; H, 1·8; F, 35·2; S, 14·8%). On prolonged heating p-FC₆H₄·O·S(:O)F₃ gave SO₂F₂ as the only identifiable product; hydrolysis gave SO₂F₂ and p-FC₆H₄·O·SO₂F ($\delta_{\rm F} = -36\cdot2$ p.p.m.) [Found: *M* (mass spec.), 194. Calc.: *M*, 194].

m-FC₆H₄·O·SiMe₃. 1:1 Reaction. m-FC₆H₄·O·SiMe₃ (10·8 mmol) and S(:O)F₄ (11·5 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (10·4 mmol) and m-FC₆H₄·O·S(:O)F₃ (9·5 mmol) (Found for m-fluorophenoxythionyl trifluoride: C, 33·5; H, 1·9; F, 35·0; S, 14·6. C₆H₄·F₂O₂S requires C, 33·4; H, 1·8; F, 35·2; S, 14·8%). Heating (400 K) and hydrolysis gave SO₂F₂ and m-FC₆H₄·O·SO₂F ($\delta_{S-F} = -37.6$ p.p.m., $\delta_{C-F} = +110\cdot3$ p.p.m.) [Found: M (mass spec.), 194. Calc.: M, 194].

o-FC₆H₄·O·SiMe₃. 1:1 *Reaction.* o-FC₆H₄·O·SiMe₃ (8.5 mmol) and S(:O)F₄ (9.7 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (8.1 mmol) and o-FC₆H₄·O·S(:O)F₃ (6.5 mmol). o-FC₆H₄·O·S(:O)F₃ decomposes with time and did not give a satisfactory analysis. Decomposition and hydrolysis gave SO₂F₂ and o-FC₆H₄·O·SO₂F ($\delta_{S-F} = -38\cdot8$ p.p.m., $\delta_{C-F} = 127\cdot1$ p.p.m.) [Found: *M* (mass spec.), 194. Calc.: *M*, 194].

p-NO₂·C₆H₄·O·SiMe₃. 1:1 *Reaction*. p-NO₂·C₆H₄·O·SiMe₃ (7·4 mmol) and S(:O)F₄ (8·9 mmol) were set aside at room temperature for 3 h. Identified products were Me₃SiF (7·3 mmol), unchanged S(:O)F₄ (3·9 mmol), and solid (p-NO₂C₆H₄O)₂S(:O)F₂ (3·1 mmol) (Found for *bis*-*p*-*nitrophenoxythionyl difluoride*: C, 40·2; H, 2·6; F, 10·5; N, 8·0; S, 8.9. $C_{12}H_8F_2N_2O_7S$ requires C, 40.0; H, 2.2; F, 10.7; N, 7.9; S, 9.4%). (p-NO₂·C₆H₄·O)₂S(:O)F₂ was only soluble in hydroxylic solvents which induced decomposition to (p-NO₂C₆H₄O)₂SO₂) [Found: *M* (mass spec.), 328. Calc.: *M*, 328].

o-C₆H₄(OSiMe₃)₂. 1:1 Reaction. o-C₆H₄(OSiMe₃)₂ (11.9 mmol) and S(:O)F₄ (14.3 mmol) were set aside at room temperature for 8 days. Identified products were Me₃SiF (22.2 mmol), unchanged S(:O)F₄ (6.3 mmol) and (o-C₆H₄O₂)₂S(:O) a colourless solid recrystallised from n-pentane [Found for bis(o-phenylene)orthosulphate: C, 54.6; H, 3.2; S, 11.9. C₁₂H₈O₅S requires C, 54.6; H, 3.0; S, 12.1%]. The highest m/e ratio peak observed in the mass spectrum is at 248 (M, 264) and other peaks occur at 172, 156, 140, and 108.

 C_6F_5 ·O·SiMe₃. 1:1 *Reaction*. C_6F_5 ·O·SiMe₃ (7·1 mmol) and S(:O)F₄ (10·0 mmol) were heated at 380 K for 17 h. Products were Me₃SiF (3·1 mmol), S(:O)F₄ (6·0 mmol), SO₂F₂ (trace), C_6H_5 ·O·SiMe₃ (3·9 mmol), and $(C_6F_5O)_3S(:O)F$ (2·1 mmol) (Found for *trispentafluorophenoxythionyl fluoride*: C, 35·2; F, 49·8; S, 5·4. $C_{18}F_{16}OS$ requires C, 35·0; F, 49·4; S, 5·2%). The mass spectrum is exceedingly complex with the highest *m/e* observed at 414 ($C_6F_5O)_2SO^+$ *m/e* = 414).

MeO·SiMe₃. 1:1 *Reaction*. MeO·SiMe₃ (10·4 mmol) and $S(:O)F_4$ (11·0 mmol) reacted together immediately at 190 K. Me₃SiF (10·3 mmol), SO_2F_2 (10·2 mmol), MeF (10·2 mmol), and unchanged $S(:O)F_4$ (trace) were identified amongst the products.

EtO·SiMe₃. 1:1 *Reaction*. EtO·SiMe₃ (10.8 mmol) and $S(:O)F_4$ (11.0 mmol) were set aside at room temperature for 2 h. Me₃SiF (10.4 mmol), SO_2F_2 (10.1 mmol), EtF (10.1 mmol), and unchanged $S(O)F_4$ (trace) were identified amongst the products.

Reactions between $S(:O)F_4$ and $Me_3Si\cdot O\cdot CH_2\cdot CH_2\cdot O\cdot SiMe_3$, $Me_3Si\cdot O\cdot CH_2\cdot CF_3$, $Me_3Si\cdot O\cdot C_6H_{11}$, and $(Me_3Si)_2O$ all gave Me_3SiF as one product but no alkoxythionyl derivatives were identified.

[1/1316 Received, July 29th, 1971]